Samarium Titanates, Strontium Samarium Titanates, and the Question of the Existence of Divalent Samarium in Oxides

BY GREGORY J. MCCARTHY, WILLIAM B. WHITE, AND RUSTUM ROY

Received December 26, 1968

Two of the oxide systems most likely to contain Sm^{2+} as a major constituent have been examined. A phase equilibrium study of the system Sm-Ti-O yielded only three ternary compounds, $\text{Sm}_2\text{Ti}_2\text{O}_7$, Sm_2TiO_5 , and SmTiO_3 . In each of these compounds the samarium is trivalent. For substitutions of samarium into SrTiO_5 the valence state of samarium is shown to be trivalent from cell parameter and spectroscopic considerations. The possibility of finding other Sm^2+ oxides is discussed.

I. Introduction

The existence of lower oxides of samarium has recently been questioned by Felmlee and Eyring.¹ They found that what had been previously reported as Sm_2O^2 and SmO^{2-4} were actually SmH_2 and $\text{Sm}\text{N}_{1-x}\text{O}_x$. Aside from the silicates ($\text{Sm}\text{Si}\text{O}_3$ and $\text{Sm}_2\text{Si}\text{O}_4$) reported by Bondar, *et al.*,⁵ these were the only examples of divalent samarium in single or mixed oxides.

Recent efforts by Brauer, *et al.*,⁶ to prepare SmO by reduction of samarium oxyhalides with LiH between $500 \text{ and } 800^{\circ}$ and by careful oxidation of the metal were unsuccessful. Their attempts to stabilize Sm²⁺ in a matrix of SrO or CaO were also unsuccessful. On the basis of thermodynamic calculations utilizing recent data, they indicated that SmO should not be a stable phase at low temperatures but proposed that it may become stable at temperatures above 800° .

In order to investigate this question further two systems which would be likely to form Sm^{2+} oxides were investigated at 1400°.

II. The System Sm–Ti–O

In a recent study of Eu^{2+} compounds McCarthy, White, and Roy^7 used titanium as a reducing agent to prepare Eu_2TiO_4 , $Eu_3Ti_2O_7$, $EuTiO_{3-x}$, and a tentative $EuTi_{12}O_{19}$. In addition, EuO and Eu_3O_4 were noted in a number of equilibrium-phase assemblages of the 1400° isotherm of the system Eu-Ti-O. A systematic study of the system Sm-Ti-O at 1400° was undertaken to try to prepare the analogous Sm²⁺ phases.

Experimental Work

The procedures used in this study are described in detail elsewhere,^{7.8} and only a brief summary will be given here.

Bulk starting materials were prepared by weighing TiO_2 (99.9%, National Lead Co.), Ti metal (99.5%, A. D. Mackay, Inc.), and Sm_2O_3 (99.9%, Research Chemicals) in the appropriate

proportions for a desired composition and grinding this mixture under CCl₄ in an agate mortar. The starting materials were pressed into pellets and heated at 1400° in a tantalum container for 24–36 hr. Argon, purified by passing over titanium metal at 900°, was the furnace atmosphere. Samples were cooled by raising them into a cold part of the furnace.

Both optical examination and X-ray techniques were utilized for phase identification. Silver γ (TiO_{1- ν}), silver to gold TiO solid solution, and blue-red Ti₂O₃ could be distinguished readily in the phase assemblages. Except for gray-white Sm₂O₃, the other phases present were fine grained and black.

X-Ray data were collected with nickel-filtered Cu K α (λ 1.5418 Å) radiation on a diffractometer calibrated with a highpurity silicon standard ($a_0 = 5.4301$ Å). Integrated intensities were measured with a planimeter and cell parameters were refined by the least-squares program of Appleman, Handwerker, and Evans.⁹

In spite of all precautions, some oxygen leaked into the furnace and the original composition of the products had to be corrected for this stray oxygen pickup. It was first necessary to show that the Sm: Ti ratio had not changed and that oxygen was the only component added to or subtracted from the bulk composition. Since oxidation by heating in air of any composition in the ternary isotherm shifts the composition of the solid phases to the join Sm₂O₃-TiO₂, a comparison of the relative amounts of the phases along this join in the oxidized product to those in the oxidized starting mixture indicated whether the Sm: Ti ratio had changed. If the Sm: Ti ratio remained constant, it was necessary only to adjust the bulk composition in the direction of the oxygen apex. This was done by measuring the weight gain on oxidizing the product by heating it in air. In a portion of the phase diagram the Sm: Ti ratio was found to change considerably owing to loss of samarium.

Results

The following are the only ternary compounds which were found in the system Sm–Ti–O at 1400°.

 $Sm_2Ti_2O_7$.—This crystallizes in the pyrochlore structure with $a_0 = 10.211$ Å.¹⁰

 Sm_2TiO_5 .—Waring and Schneider¹¹ proposed the existence of this compound although they did not recognize it as belonging to any known structure type. The X-ray diffraction powder data, listed in Table I, were indexed on an orthorhombic cell of $a_0 = 10.59$ Å, $b_0 = 3.792$ Å, and $c_0 = 11.35$ Å, by analogy to the recently elucidated structure of Y_2TiO_5 .¹² In this

⁽¹⁾ T. L. Felmlee and L. Eyring, Inorg. Chem., 7, 660 (1968).

⁽²⁾ H. A. Eick, N. C. Baenziger, and L. Eyring, J. Am. Chem. Soc., 78, 5147 (1956).

⁽³⁾ F. H. Ellinger and W. H. Zachariasen, ibid., 75, 5650 (1953).

⁽⁴⁾ J. C. Achard, Compt. Rend., 245, 1064 (1957).

⁽⁵⁾ I. A. Bondar, N. A. Toropov, and L. N. Koroleva, Izv. Akad. Nauk SSSR, Neorgan. Materialy, 1, 561 (1965).

⁽⁶⁾ G. Brauer, H. Bärnighausen, and N. Schultz, Z. Anorg. Allgem. Chem., 356, 46 (1968).

⁽⁷⁾ G. J. McCarthy, W. B. White, and R. Roy, J. Inorg. Nucl. Chem., **31**, 329 (1969).

⁽⁸⁾ G. J. McCarthy, W. B. White, and R. Roy, J. Am. Ceram, Soc., in press.

⁽⁹⁾ D. E. Appleman, D. S. Handwerker, and H. T. Evans, Jr., Annual Meeting of the American Crystallographic Association, Cambridge, Mass., 1963, Program pp 42–43.

⁽¹⁰⁾ L. H. Brixner, Inorg. Chem., 3, 1065 (1964).

⁽¹¹⁾ J. L. Waring and J. S. Schneider, J. Res. Natl. Bur. Std., 69A, 225 (1965).

⁽¹²⁾ W. G. Mumme and A. D. Wadsley, Acta Cryst., B24, 1327 (1968).

d, Å				d			
Obsd	Calcd	1/I1 ^b	hkl	Obsd	Calcd	I/I_1^b	hkl
7.76	7.74	4	101	1.909	∫1.910	7	∫314
5.30	5.31	1	200		1.909		305
4.998	5,000	3	102	1.896	1.896	23	020
4.796	4.797	4	201	1.892	1.891	3	006
3.871	3.870	1	202	1.882	1.882	47	413
3.596	3,596	3	011	1.859	1.861	14	106
3.558	3.561	12	103	1.848	1.847	5	503
3.404	3.405	5	111	1.842	1.841	4	121
3.370	3.370	2	301	1.826	∫1,828	5	∫215
3.084	3.082	100	210		1.825		1511
3.075	3.077	80	203	1.759	1.758	7	512
3.021	3.021	5	112	1 799	$\int 1.724$	0	∫414
2.997	2.997	11	302	1.720	1.723	2	1405
2.739	2.740	2	104	1 704	∫1.705	ß	∫315
2.679	2.678	27	013	1,704	(1.703)	0	$\lfloor 222 ightharpoonup$
2.649	2.647	10	400	1.698	1.697	2	504
2.595	2.596	10	113	1.686	1.685	3	602
2.578	2.578	11	401	1.674	1.674	5	123
2,520	2.519	3	311	1.670	1.671	8	116
2.352	2.351	9	312	1.668	1.667	17	306
2.214	2.211	5	304	1.662	1.661	4	513
2,133	∫2.133	14	∫313	1.613	$\int 1.614$	28	∫223
	2.132	14	411		(1.612)		216
2.086	∫2.086	7	$\int 214$	1.602	∫1.602	18	∫107
	2.087	1	205		(1.602)		322
2.079	2.081	6	501	1.585	1.584	7	611
2.028	2.027	6	412	1.540	(1.540)	12	∫612
1.984	1.984	2	502		1.539		1406
1.936	1.935	1	404		(1.528)		323
1.914	1.915	5	115	1.527	$\{1.527$	13	421
					(1.526)		316

 $\label{eq:Table 1} Table \ 1$ X-Ray Diffraction Powder Data on $Sm_2TiO_5{}^\alpha$

^a Orthorhombic cell, $a_0 = 10.59$ Å, $b_0 = 3.792$ Å, $c_0 = 11.35$ Å; space group D_{2h}¹⁶ (Pnma); Y₂TiO₆ structure. ^b Integrated intensity.

X-RAY DIFFRACTION POWDER DATA ON SmTiO3^a -d, Å d. Å $1/I_{1}^{b}$ hkl Obsd Calcd I/I_1^b Obsd Calcd hkl 4.4674.466 1 101 1.7511.75310 2223.9373.93425110(1.739)131 002 3.868 11 1.7381.736563.8711143.509 3.507 211111.735 310 2.8342.83319020 1.6941.6933 3112.7581001121.6216 2.7591.6211322.7332.73460 2001.598171.597024 2.6602.66029 0211.585741.583312 2.3472.34610 2111.5641.564 $\overline{7}$ 223022 1.4682.28514 2.2877 1.4681332.2332.233142021.4431.4423 2322.1582.15720 1131.3931.3938 0412.1092.1102 1221.3791.379202242.079 2.0771 2121.3671.3673 4001.967 1.967212201.356 $\mathbf{2}$ 1.3560250041.9341.93415(1.318)(323)(1.906)(221)1.3121.312 $\mathbf{4}$ 134 1.90622023 1.9051.311330 (1.781)2131.2941.29318331 1.7804 301 1.7741.231(420 1.229191.225116

TABLE II X-RAY DIFFRACTION POWDER DATA ON SmTiO.4

^a Orthorhombic cell, $a_0 = 5.468$ Å, $b_0 = 5.665$ Å, $c_0 = 7.737$ Å; space group D_{2h}^{16} (Pbnm); GdFeO₃ structure. ^b Integrated intensity.

unusual structure the Sm is seven-coordinated while the Ti is five-coordinated.

SmTiO₃.—This was first prepared by Holzapfel and Sieler,¹³ who recognized it to be a Sm³⁺Ti³⁺ distorted perovskite although they did not assign it a unit cell. (13) H. Holzapfel and J. Sieler, Z. Anorg. Allgem. Chem., **343**, 174 (**19**66). The X-ray data, listed in Table II, were indexed on an orthorhombic cell of $a_0 = 5.468$ Å, $b_0 = 5.665$ Å, and $c_0 = 7.737$ Å. It appears to crystallize in the GdFeO₃ structure.¹⁴

A portion of the 1400° isotherm is given as Figure 1. (14) S. Geller and E. A. Wood, *Acta Cryst.*, 9, 563 (1956).

Figure 1.—Phase diagram for a portion of the 1400° isotherm of the system Sm–Ti–O (the portion shown is from 30 to 70 mol % oxygen).

In order to keep the diagram as uncluttered as possible, the phase assemblages are numbered and listed separately in Table III. The diagram is seen to consist of three-phase triangles and two-phase areas connecting the compounds and solid solutions. The runs used to establish these boundaries are also shown. Heavier lines were utilized to indicate the extent of solid solution. Data on the Ti–O binary were taken from Porter¹⁵ and Wahlbeck and Gilles.¹⁶ Also because of space considerations, the dozen or so boundaries connecting the Magneh phase (Ti_nO_{2n-1}) and SmTiO₃ were omitted.

TABLE III

THASE ASSEMBLAGES IN FIGURE I
Phase assemblage ^{n}
$Sm_2O_3 + SmRV + \gamma (TiO_{1-y})$
$Sm_2O_3 + \gamma (TiO_{1-y}) + SmTiO_3$
$\gamma (\text{TiO}_{1-y}) + \text{SmTiO}_{3} + (\text{TiO})_{SS}$
$SmTiO_3 + (TiO)_{SS}$
$\mathrm{SmTiO}_3 + (\mathrm{TiO})_{\mathrm{SS}} + (\mathrm{Ti}_2\mathrm{O}_3)_{\mathrm{SS}}$
$\rm SmTiO_3$ + $(Ti_2O_3)_{SS}$
$\mathrm{SmTiO}_3 + (\mathrm{Ti}_2\mathrm{O}_3)_{\mathrm{SS}} + (\mathrm{Ti}_3\mathrm{O}_5)_{\mathrm{SS}}$
$\rm SmTiO_8 + (Ti_3O_5)_{SS}$
$SmTiO_8 + Ti_nO_{2n-1}$ and
$\mathrm{SmTiO}_3 + \mathrm{Ti}_n\mathrm{O}_{2n-1} + \mathrm{Ti}_{n+1}\mathrm{O}_{2n+1}$
$\mathrm{SmTiO}_3 + \mathrm{TiO}_2 + \mathrm{Sm}_2\mathrm{Ti}_2\mathrm{O}_7$
$\mathrm{SmTiO}_3 + \mathrm{Sm}_2\mathrm{Ti}_2\mathrm{O}_7 + \mathrm{Sm}_2\mathrm{TiO}_5$
$\mathrm{SmTiO}_3 + \mathrm{Sm}_2\mathrm{TiO}_5 + \mathrm{Sm}_2\mathrm{O}_3$

"Each phase assemblage is also in equilibrium with a vapor phase whose oxygen fugacity is fixed by each bulk composition. ^b SmRV = samarium metal rich volatile species. "This single triangle is actually filled with two- and three-phase assemblages involving Magneli phases, for example, SmTiO₃ + Ti₄O₇ and SmTiO₃ + Ti₄O₇ + Ti₅O₉.

It should be noted that outside of the region bounded by $\text{Sm}_2\text{O}_3-\text{TiO}_2-\gamma$ no runs are plotted. (γ is one of the ordered solutions of oxygen in Ti metal. At 1400° it extends from approximately $\text{TiO}_{0.47}$ to $\text{TiO}_{0.52}$ (*i.e.*, \sim Ti₂O).) Bulk compositions in this region exhibited large changes in the Sm: Ti ratio when heated. By comparing the initial and final bulk compositions it was deduced that the component lost was mainly samarium metal. The metal melts at 1060° and has such a large vapor pressure at 1400° that it boils off during the run. (15) V. Porter, Ph.D. Dissertation, The Pennsylvania State University, 1965.

(16) P. G. Wahlbeck and P. W. Gilles, J. Am. Ceram. Soc., 49, 180 (1966).

After a run of bulk compositions in this region, cold parts of the furnace tube were coated with an amorphous powder. This behavior was also encountered in previous investigations of the Sr–Ti–O⁸ and Eu–Ti–O⁷ systems and is discussed in greater detail in these publications.

Discussion

No Sm²⁺ titanates were found in this system. In addition, the phase assemblage Sm₂O₃ + SmTiO₃ + γ rules out the existence of Sm₃O₄ and SmO at 1400°. If these did exist, phase assemblages such as SmO + SmTiO₃, SmO + Sm₃O₄ + SmTiO₃, and Sm₃O₄ + SmTiO₃ would have been located in the region taken up by Sm₂O₃ + SmTiO₃ + γ . This confirms the results of Brauer, *et al.*, and shows that SmO and Sm₃O₄ are not stable phases up to 1400°.

If $\mathrm{Sm}^{3}+\mathrm{Ti}^{3}+\mathrm{O}_{3}$ could be reduced, some of the Sm^{3+} would have to be converted to Sm^{2+} (there is no "Ti²⁺ ion"—the only example of "divalent titanium" is TiO and that compound is actually metallic). Several runs just below SmTiO_{3} in oxygen content indicated that no reduction is possible. Instead, even a slight reduction of SmTiO_{3} caused the separation into three coexisting phases ($\mathrm{Sm}_{2}\mathrm{O}_{3} + \mathrm{SmTiO}_{3} + \gamma$) rather than producing a single reduced SmTiO_{3-x} phase.

III. The System SmTiO₃-SrTiO₃

Divalent strontium has an ionic radius similar to that expected of divalent samarium in oxides (1.17 Å) and it was thought that small substitutions of Sm into a matrix of the cubic perovskite $SrTiO_3$ might stabilize Sm^{2+} .

Experimental Work

The SrTiO₃ was prepared by heating the appropriate amounts of SrCO₃ (Baker, 99.5%) and TiO₂ in air at 1400°. An equimolar mixture of Sm₂O₃ and Ti₂O₃ was heated in an evacuated, sealed silica capsule at 1200° to produce SmTiO₃.

The mixing, pelletizing, and heating procedures were the same as those described above.

Phase identification was carried out by X-ray techniques.

Cell parameter measurements on the cubic perovskite phase were obtained by repeatedly scanning and measuring the (321) reflection along with a high-purity silicon internal standard.

Diffuse reflectance spectra were obtained on a Beckmann Model DK-2A spectrophotometer equipped with a MgO-coated integrating-sphere reflectance attachment. MgO was used in the reference beam. The specular component was removed from the beam.

Results and Discussion

At 1400° two solid solutions with a miscibility gap between them were found. Orthorhombic SmTiO₃ accepts approximately 10 mol % SrTiO₃ while cubic SrTiO₃ accepts 36 mol % SmTiO₃. The solid solutions have a miscibility gap from 10 to 64 mol % SrTiO₃. There is a small but definite cell parameter change in the cubic solid solution with SmTiO₃ content and this is shown in Figure 2. The shrinking of the cell with increasing SmTiO₃ implies that the Sm substituting for Sr is in the trivalent state, as little change would be expected from Sm²⁺ substitution. The positive deviation

Figure 2.—Variation of the cubic cell edge with composition for $(Sr_xSm_{1-x})TiO_{3}$.

from linear cell parameter change (Vegard's law) could be due to the fact that actually two substitutions are being made and with opposite effects. With increasing SmTiO₃, a larger Ti³⁺ is substituting for Ti⁴⁺ for each smaller Sm³⁺ which substitutes for Sr²⁺. The ~ 0.01 -Å change is about that expected from ionic radii differences ($\Delta r_{\text{Ti}^{4+}\text{Ti}^{3+}} = 0.08$ Å, $\Delta r_{\text{Sr}^{2+}\text{Sm}^{3+}} = -0.12$ Å) for 36 mol % substitution of SmTiO₃ into SrTiO₃.

It was felt that another test of valence states was necessary before a definite assignment could be made. A test was available for the presence of Ti^{3+} (and thus Sm³⁺). Porter¹⁵ and Porter, White, and Roy¹⁷ found that when Ti³⁺ was substituted for Ti⁴⁺ in the Magneli phases (in this case, Ti_nO_{2n-1} with *n* decreasing), a broad maximum was noted in the diffuse reflectance spectrum of the powder. This maximum shifted to lower wavelengths as the Ti³⁺:Ti⁴⁺ ratio was increased. This maximum has also been found in the Ti³⁺ for Ti⁴⁺ substitutions in $SrTiO_{3-x}$.^{8,18} This test is valid only when Ti³⁺ is the only ion present which is capable of producing spectra in the region scanned (500-2650 nm). In the case of SrTiO₃-SmTiO₃, Sr²⁺ and Ti⁴⁺ have rare gas electronic configurations. Trivalent samarium and divalent samarium (equivalent in electronic configuration to Eu^{3+}) do exhibit spectral features in the region scanned¹⁹ but these are weak and would be obscured by the larger absorption features of the blue-black powders.

The broad maximum typical of Ti^{3+} was found for the cubic solid solution. A typical spectrum is shown in Figure 3. The shift in the maximum with increasing Ti^{3+} (and thus Sm^{3+}) is plotted in Figure 4.

According to this test the samarium valence state in $(Sr_xSm_{1-x})TiO_3$ is trivalent. The possibility that a

Figure 3.—Typical diffuse reflectance spectrum for (Sr_xSm_{1-x}) -TiO₃.

Figure 4.—Variation of the broad maximum in the diffuse reflectance spectrum of $(Sr_xSm_{1-x})TiO_8$ with composition.

large portion of the samarium is divalent and the rest is trivalent could be raised, but this was discounted owing to the absence of the highly absorbing $Sm^{2+}-Sm^{3+}$ intervalence transfer bands which would be expected in the spectral region examined.

IV. General Discussion

None of the Sm^{2+} titanates proposed by analogy to Eu^{2+} titanates could be prepared. It is thus very unlikely that any other Sm^{2+} mixed oxides in which the bonding is largely ionic (vanadates, molybdates, zirconates, tantalates, etc.) including the silicates of Bondar, *et al.*, can be prepared if the titanates were not, first, because titanium and its lower oxides are among the best reducing agents known and, second, because none of the common oxide crystal structures is likely to be able to supply the apparently vast amount of energy needed to stabilize Sm^{2+} instead of Sm^{3+} . Efforts to reproduce the divalent samarium silicate preparations in our laboratories have been unsuccessful.

Acknowledgment.—This work was supported by U. S. Army Electronics Command Contract No. DA 28-043 AMC 01304(E).

⁽¹⁷⁾ V. Porter, W. B. White, and R. Roy, to be submitted for publication.

⁽¹⁸⁾ P. P. J. Van Engelen and J. C. M. Henning, Phys. Letters, 25A, 733 (1967).

⁽¹⁹⁾ W. B. White, Appl. Spectry., 21, 167 (1967).